精英家教网 > 高中数学 > 题目详情

【题目】已知点是圆上的一个动点,为圆心,线段的垂直平分线与直线的交点为

1)求点的轨迹的方程;

2)设轴的正半轴交于点,直线交于两点(不经过点),且,证明:直线经过定点,并写出该定点的坐标.

【答案】(1);(2)直线经过定点.

【解析】

(1)由椭圆定义,得到点的轨迹是以为焦点的椭圆,求得的值,进而得到的值,即可得到椭圆的标准方程;

(2)联立方程组,利用二次方程根与系数的关系,求得,得到,再由,根据,即可求解实数m的值,进而得出结论.

(1)圆的圆心,半径

由垂直平分线性质知:

由椭圆定义知,点的轨迹是以为焦点的椭圆,

,焦距为

所以的方程为.

(2)由已知得,由

时,设,则

,即

所以,解得

①当时,直线经过点,不符合题意,舍去.

②当时,显然有,直线经过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是(  )

A. 回答该问卷的总人数不可能是100

B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多

C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少

D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 ()的一个焦点为椭圆内一点,若椭圆上存在一点,使得,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正四棱锥中, 为底面正方形的重心, 分别为侧棱的中点,有下列结论:

平面;②平面平面;③

④直线与直线所成角的大小为.

其中正确结论的序号是__________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,求的单调区间;

2)设,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)g(x)分别是定义在R上的奇函数和偶函数,当x0时,f′(x)·g(x)f(x)·g′(x)0,且f(3)·g(3)0,则不等式f(x)·g(x)0的解集是( )

A. (3,0)∪(3,+∞)

B. (3,0)∪ (0,3)

C. (,-3)∪(3,+∞)

D. (,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,于点,将沿折起,使,连接,得到如图所示的几何体.

1)求证:平面平面

2)若点在线段上,直线与平面所成角的正切值为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C所对的边分别为a,b,c且ccosA=4,asinC=5.

(1)求边长c;

(2)著△ABC的面积S=20.求△ABC的周长.

查看答案和解析>>

同步练习册答案