精英家教网 > 高中数学 > 题目详情
(2007•静安区一模)(理) 如图,已知四棱锥P-ABCD的底面ABCD是边长为a的正方形,点O为该正方形的中心,侧棱PA=PC,PB=PD.
(1)求证:四棱锥P-ABCD是正四棱锥;
(2)设点Q是侧棱PD的中点,且PD的长为2a.求异面直线OQ与AB所成角的大小.(用反三角函数表示)
分析:(1)先根据PA=PC,得到PO⊥AC;同理PO⊥BD可得PO⊥平面ABCD; 再结合O是正方形ABCD的中心即可证:四棱锥P-ABCD是正四棱锥;
(2)以O为原点,正方形对角线为x,y轴,求出个对应点的坐标以及对应向量的坐标,再代入由数量积求向量夹角的计算公式即可得到结论.
解答:解:(理)(1)连接PO,因为PA=PC,所以PO⊥AC;       (2分)
同理PO⊥BD;所以PO⊥平面ABCD;                   (4分)
又因为O是正方形ABCD的中心,
所以四棱锥P-ABCD是正四棱锥.(6分)
(2)解:以O为原点,正方形对角线为x,y轴,A(0,-
2
2
a,0),B(
2
2
a,0,0)
P(0,0,
14
2
a)
OQ
=(-
2
4
a,0,
14
4
a)
AB
=(
2
2
a,
2
2
a,0)
,(10分)
OQ
AB
的夹角为θ,则cosθ=-
1
4
.设
OQ
AB
的夹角为θ,则cosθ=-
1
4

所以异面直线OQ与AB所成角的大小为arccos
1
4
.             (14分)
点评:本题主要考查异面直线及其所成的角以及棱锥的结构特征.正四棱锥的要求是下底面为正方形,顶点在底面内的射影为下底面的中心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•静安区一模)一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(文)函数f(x)=x+
2
x
(x∈(0 , 2 ] )
的值域是
[2
2
,+∞)
[2
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(理)设满足不等式
a(x-2)x+3
<2
的解集为A,且1∉A,则实数a的取值范围是
(-∞,-8]
(-∞,-8]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)设f(x)=
-2x+a2x+1+b
(a,b为实常数).
(1)当a=b=1时,证明:f(x)不是奇函数;
(2)设f(x)是实数集上的奇函数,求a与b的值;
(3)(理) 当f(x)是实数集上的奇函数时,证明对任何实数x、c都有f(x)<c2-3c+3成立.
(4)(文)求(2)中函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(文)不等式组
2x-y+2≥0
x≤0
0≤y≤1
表示的平面区域形状是一个(  )

查看答案和解析>>

同步练习册答案