A. | (-4,-e-$\frac{4}{e+1}$) | B. | (-4,-3) | C. | (-e-$\frac{4}{e+1}$,-3) | D. | (-e-$\frac{4}{e+1}$,+∞) |
分析 求函数的导数,判断函数的取值情况,利用换元法,设t=f(x),将方程转化为一元二次方程,利用根的分布建立条件关系即可得到结论.
解答 解:f(x)=$\frac{{e}^{x}}{|x|}$=$\left\{\begin{array}{l}{\frac{{e}^{x}}{x},x>0}\\{-\frac{{e}^{x}}{x},x<0}\end{array}\right.$,
由x>0时,f(x)=$\frac{{e}^{x}}{x}$的导数为f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
可得x>1,f(x)递增,0<x<1时f(x)递减,x=1处取得极小值e;
当x<0时,f(x)=-$\frac{{e}^{x}}{x}$的导数为f′(x)=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
可得x<0时f(x)递增,
作出函数f(x)对应的图象如图:
设t=f(x),方程f2(x)+(m+1)f(x)+m+4=0
等价为t2+(m+1)t+m+4=0,
由题意结合图象可得△>0,且0<t1<e且t2>e,
即有(m+1)2-4(m+4)>0,解得m>5或m<-3,①
由f(t)=t2+(m+1)t+m+4,可得f(0)>0,f(e)<0,
即为m>-4,m<-e-$\frac{4}{e+1}$,②
由①②可得-4<m<-e-$\frac{4}{e+1}$.
故选:A.
点评 本题考查了根的存在性及根的个数的判断,考查了利用函数的导函数分析函数的单调性,考查了学生分析问题和解决问题的能力,利用换元法转化为一元二次方程,是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
万元 | 5 | 6 | 8 | 8.5 | 10.5 | 11.5 | 8.5 | 13 |
A. | 13 | B. | 13.18 | C. | 13.5 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com