精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x)=f(x+2) 当x∈[1,3]时,f(x)=2-|x-2|,则下列不等式一定成立的是(  )
A、f(sin
π
6
)<f(cos
π
6
B、f(sin1)<f(cos1)
C、f(cos
3
)<f(sin
3
D、f(cos2)<f(sin2)
分析:先将区间[1,3]分解为[1,2]和∈(2,3]两部分,去绝对值讨论出函数的单调性,再观察题设条件与选项.选项中的数都是(-1,1)的数,故利用f(x)=f(x+2)找出函数在(-1,1)上的单调区间,用单调性比较大小.
解答:解:x∈[1,2]时,f(x)=x,故函数f(x)在[1,2]上是增函数,
    x∈(2,3]时,f(x)=4-x,故函数f(x)在[2,3]上是减函数,
    又定义在R上的f(x)满足f(x)=f(x+2),故函数的周期是2
    所以函数f(x)在(-1,0)上是增函数,在(0,1)上是减函数,
    观察四个选项:A中sin
π
6
<cos
π
6
<1,故A不对;
     B选项中0<cos1<sin1<1,故B为真命题;
     C选项中 f(cos
3
)=f(-
1
2
)=f(
3
2
)=
3
2
,f(sin
3
)=f(
3
2
)=f(2+
3
2
)=2-
3
2
,故C为假命题;
    D选项中 f(cos2)=2-cos2>2>f(sin2)=2-sin2  
     综上,选项B是正确的.
     故选B.
点评:本题考查函数的周期性与函数的单调性比较大小,属于中档题.将函数的表达式化为分段的形式,再将所给的区间平移至(-1,1),进而利用单调性来比较函数值的大小,是处理函数的周期性常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案