【题目】如图所示,在四棱锥中,底面是正方形,侧棱底面, , 是的中点,过点作交于点.
(1)证明: 平面;
(2)证明: 平面;
(3)求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】设U=R,A={x|x≤2,或x≥5},B= ,C={x|a<x<a+1}
(1)求A∪B和(UA)∩B
(2)若B∩C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①与所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga (a>0且a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并说明理由;
(3)当x∈(n,a﹣2)时,函数f(x)的值域为(1,+∞),求实数n,a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质: ⑴对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.关于函数f(x)=(3x)* 的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(﹣∞,﹣ ),( ,+∞).
其中所有正确说法的个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】综合题。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函数,且满足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.
(1)求证: 平面;
(2)求异面直线与所成角的余弦值;
(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx﹣4x,g(x)=﹣x2﹣3. (Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com