精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+x,g(x)=
x2+ax+4x

(1)若曲线y=f(x)的切线过点(1,2),求其切线方程;
(2)若对任意的x1∈[1,3],存在x2∈[1,3],使得f(x1)≥g(x2)成立,求a的取值范围;
(3)若对任意的x1,x2∈[1,3]都有f(x1)≥g(x2)成立,求a的取值范围.
分析:(1)由f(x)=x3+x,知f'(x)=3x2+1.设切点为(x0,x03+x0),则其切线方程为:y-(x03+x0)=(3x02+1)(x-x0).由切线过点(1,2),能求出切线方程.
(2)“对任意的x1∈[1,3],存在x2∈[1,3],使得f(x1)≥g(x2)成立”等价于f(x)min≥g(x)min.由此能求出a的取值范围.
(3)“对任意的x1,x2∈[1,3]都有f(x1)≥g(x2)成立”等价于f(x)min≥g(x)max.由此能求出a的取值范围.
解答:解:(1)∵f(x)=x3+x,
∴f'(x)=3x2+1.
设切点为(x0,x03+x0),
则其切线方程为:y-(x03+x0)=(3x02+1)(x-x0).
又切线过点(1,2),
∴(x0-1)2(2x0+1)=0,
∴x0=1或x0=-
1
2

∴所求切线方程为:4x-y-2=0或7x-4y+1=0.
(2)“对任意的x1∈[1,3],存在x2∈[1,3],使得f(x1)≥g(x2)成立”
等价于f(x)min≥g(x)min
∵f(x)=x3+x在[1,3]上是单调递增函数,
∴f(x)min=f(1)=2.
g(x)=
x2+ax+4
x
=x+
4
x
+a
在[1,2]上单调递减,
在[2,3]上单调递增,
∴g(x)min=g(2)=4+a,
∴4+a≤2,
即a≤-2.
(3)“对任意的x1,x2∈[1,3]都有f(x1)≥g(x2)成立”
等价于f(x)min≥g(x)max
而f(x)min=f(1)=2,
g(x)max=g(1)=5+a,
∴a≤-3.
点评:本题考查利用导数求闭区间上的最值,解题时要认真审题,注意合理地进行等价转化.注意导数性质和切线方程的合理运用.易错点是“对任意的x1,x2∈[1,3]都有f(x1)≥g(x2)成立”等价于f(x)min≥g(x)max
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案