精英家教网 > 高中数学 > 题目详情

已知,函数
(1)若函数在区间内是减函数,求实数的取值范围;
(2)求函数在区间上的最小值

(1)(2)

解析试题分析:解:(1)∵,令
时,递减,不合舍去
时,递减,
(2)∵,令
①若,则当时,,所以在区间上是增函数,
所以.    
②若,即,则当时,,所以在区间上是增函数,所以. 
③若,即,则当时,;当时,.所以在区间上是减函数,在区间上是增函数.
所以.   
④若,即,则当时,
所以在区间上是减函数.所以
综上所述,函数在区间的最小值:
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 试判断函数上单调性并证明你的结论;
(2) 若恒成立, 求整数的最大值;
(3) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断的奇偶性;
(2)确定函数上是增函数还是减函数?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;
(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ) 求函数在点处的切线方程;
(Ⅱ) 若函数在区间上均为增函数,求的取值范围;
(Ⅲ) 若方程有唯一解,试求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知yf(x)是定义在R上的奇函数,当x≤0时,f(x)=2xx2.
(1)求x>0时,f(x)的解析式;
(2)若关于x的方程f(x)=2a2a有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,
(1)讨论的单调区间;
(2)若对任意的,且,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数上是增函数,且
① 确定函数的解析式;
② 解不等式<0.

查看答案和解析>>

同步练习册答案