精英家教网 > 高中数学 > 题目详情
设f(x)=-x3+ax2+bx+c(a>0),在x=1处取得极大值,且存在斜率为
4
3
的切线.
(1)求a的取值范围;
(2)若函数y=f(x)在区间[m,n]上单调递增,求|m-n}的取值范围;
(3)是否存在a的取值使得对于任意x∈(-∞,0],都有f(x)≥0.
(1)f′(x)=3x2+2ax+b,
∴f′(1)=-3+2a+b=0,∴b=3-2a
f′(x)=-3(x-1)[x-(
2a
3
-1)]=0,解得x1=1,x2=
2a
3
-1
∵f(x)在x=1处有极大值,
2a
3
-1<1,
∴a<3
又f'(x)-
4
3
=0有实根,a≤1或a≥5,
∴0<a≤1(4分)
(2)f(x)的单调增区间为(
2a
3
-1,1)
则|x1-x2|=2-
2a
3
∈[
4
3
,2)
[m、n]⊆[x1,x2]
∴|m-n|∈(0,2)(8分)
(3)(方法一)由于f(x)在(-∞,
2a
3
-1)上是减函数,
在(
2a
3
-1,1)上是增函数.
在(1,+∞)上是减函数,而x∈(-∞,0),
2a
3
-1∈(-1,
1
3
].
f(x)在(-∞,0]上的最小值就是f(x)在R上的极小值.
f(x)min=f(
2a
3
-1)=
4
27
a3
-
4
3
a2
+3a-2+c≥c,
得g(a)=)=
4
27
a3
-
4
3
a2
+3a+1,
g′(a)=
4
9
a2
-
8
3
a+3=
4
9
(x-
9
2
)(a-
9
2
),在[
1
2
,1]上单调递增.
∴g(a)min=g(
1
2
)=
1
54
-
1
3
+
3
2
-2>0,不存在.
依上,不存在a的取值,使f(x)≥c恒成立.(14分)
(方法二)f(x)≥c 等价于-x3+ax2+bx+c≥c
即-x3+ax2+bx≥0,x∈(-∞,0]
当x=0时,不等式恒成立;
当x∈(-∞,0)时,上式等价于x2-ax-b≥0
即x2-ax-3+2a≥0,x2-3≥(x-2)a
a≥
x2-3
x-2
=x-2+
1
x-2
+4
g(x)=
1
x-2
+x-2+4在(-∞,0)上递增
所以g(x)<-2+4=2即a>2
而0<a≤1,故不存在.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设f(x)=x3-3x2-9x+1,则不等式f′(x)<0的解集是
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
1
2
)•f(
1
2
)<0,则方程f(x)=0在[-1,1]内(  )
A、可能有3个实数根
B、可能有2个实数根
C、有唯一的实数根
D、没有实数根

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a、b的值,并求出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
34
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,则下列命题中错误的是(  )

查看答案和解析>>

同步练习册答案