精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别是a,b,c.已知
(1)求角C的大小;
(2)设f(x)=cos(ωx-C)-cos(ωx+C),(ω>0)且f(x)的最小正周期是π,求f(x)在上的最大值.
【答案】分析:(1)利用向量的数量积公式,再结合正弦、余弦定理,即可求得C;
(2)先利用和、差的余弦公式化简函数,结合函数的周期,求得函数的解析式,从而可求f(x)在上的最大值.
解答:解:(1)∵
∴sin2A+sin2B=0
∴a2+b2-c2+ab=0
∴cosC==-
∵C∈(0,π),∴C=
(2)f(x)=cos(ωx-C)-cos(ωx+C)=2sinωxsinC=sinωx,
∵f(x)的最小正周期是π,∴ω=2
∴f(x)=sin2x
,∴
∴2x=,即x=时,f(x)在上的最大值为1.
点评:本题考查向量知识的运用,考查正弦、余弦定理,考查三角函数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案