精英家教网 > 高中数学 > 题目详情
我班制定了数学学习方案:星期一和星期日分别解决4个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有(  )
A、50种B、51种
C、140种D、141种
考点:计数原理的应用
专题:计算题,排列组合
分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.
解答: 解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,
所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,
所以共有
C
0
6
+
C
1
6
C
1
5
+
C
2
6
C
2
4
+
C
3
6
C
3
3
=141种.
故选D.
点评:本题考查组合知识的运用,考查学生分析解决问题的能力,确定中间“多一个”或“少一个”的天数必须相同是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}满足an=3an-1+2(n≥2),且a1=2,则该数列的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.
(1)求a的值;
(2)若m,n是正实数,且m+n=a,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用计算机产生0~1之间的群与随机数a,则事件-
1
2
<3a-1<0发生的概率为(  )
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

定义
a
?
b
=|
a
|•|
b
|sinθ(θ为
a
b
的夹角),给出下列命题.
a
?
b
=
b
?
a
;                  
②λ(
a
?
b
)=(λ
a
)?
b

a
?(
b
+
c
)=
a
?
b
+
a
?
c
;       
a
b
?
a
?
b
=|
a
|•|
b
|;
⑤设
a
=(x1,y1),
b
=(x2,y2),则
a
?
b
=|x1y2-x2y1|
其中正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+2)的定义域为[1,2],求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=0,an+1=an+2n(n∈N*),那么a2011的值是(  )
A、2 0112
B、2 012×2 011
C、2 009×2 010
D、2 010×2 011

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=
x2+ax+a
x
(x≠0),下列说法正确的是
 

①函数f(x)有两个极值点x=±
a

②函数f(x)的值域为(-∞,-2
a
+a]∪[2
a
+a,+∞);
③当a≤1时,函数f(x)在[1,+∞)是增函数;
④函数f(x)的图象与x轴有两个公共点的充要条件是a>4或a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数的和大于2n”,则算过关,则某人连过前三关的概率是(  )
A、
100
243
B、
50
243
C、
49
243
D、
98
243

查看答案和解析>>

同步练习册答案