精英家教网 > 高中数学 > 题目详情

椭圆上的点M到焦点F1的距离是2,N是MF1的中点,则|ON|为(     )

 A.4              B.2            C.8             D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网点A、B分别是椭圆
x2
36
+
y2
20
=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求P点的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点F在y轴的非负半轴上,点F到短轴端点的距离是4,椭圆上的点到焦点F距离的最大值是6.
(Ⅰ)求椭圆的标准方程和离心率e;
(Ⅱ)若F′为焦点F关于直线y=
3
2
的对称点,动点M满足
|MF|
|MF′|
=e,问是否存在一个定点M,使M到点A的距离为定值?若存在,求出点A的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点A、B分别是椭圆
x2
36
+
y2
20
=1
的长轴的左、右端点,F为椭圆的右焦点,直线PF的方程为
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直线PA的方程;
(Ⅱ)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•淄博二模)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5
2

(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,
3
3
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

点M到定点F(4,0)的距离和它到直线l:x=的距离的比是常数,则点M的轨迹方程是     .椭圆+=1上的点M到焦点F(4,0)的距离和它到定直线l:x=的距离的比是      .

查看答案和解析>>

同步练习册答案