精英家教网 > 高中数学 > 题目详情
,且,求的取值范围。

解析

    则

   

    比较系数有

   

    即
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,已知两点A(2,1),B(-1,1),若点P满足
OP
=α•
OA
+β•
OB
,其中α,β∈R且2α22=
2
3
. 
1)求点P的轨迹C的方程.2)设D(0,2),过D的直线L与曲线C交于不同的两点M、N,且M点在D,N之间,设
DM
DN
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ADB为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设
|DM||DN|
=λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B是椭圆E:
x2
a2
+
y2
b2
=1(a
>b>0)上的一点,F是椭圆右焦点,且BF⊥x轴,B(1,
3
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设A1和A2是长轴的两个端点,直线l垂直于A1A2的延长线于点D,|OD|=4,P是l上异于点D的任意一点,直线A1P交椭圆E于M(不同于A1,A2),设λ=
A2M
A2P
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省杭州市高一5月月考数学试卷(解析版) 题型:解答题

 已知函数

(1)求的最大值及取得最大值时的集合;

(2)设的角的对边分别为,且.求的取值范围

 

查看答案和解析>>

同步练习册答案