精英家教网 > 高中数学 > 题目详情
7.马路有五个路灯,为节约用电又看清路面,可以把其中的一只灯关掉,在两端的灯不能关掉的情况下,满足条件的关灯方法有3种.

分析 根据题意,分析可得需要在中间3盏路灯中选一只关掉,有组合数公式计算可得答案.

解答 解:根据题意,五个路灯中选一只灯关掉,而两端的灯不能关掉,
则需要在中间3盏路灯中选一只关掉,有C31=3种;
故答案为:3.

点评 本题考查组合数的应用,注意“两端的灯不能关掉的情况”的条件限制.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线l1:x+y-2=0,直线l2过点A(-2,0)且与直线l1平行.
(1)求直线l2的方程;
(2)点B在直线l1上,若|AB|=4,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}x}}$的定义域为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若O为坐标原点,直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两支分别交于A、B两点,直线OA的斜率为-1,则该双曲线的渐近线的斜率为(  )
A.±$\frac{\sqrt{5}}{2}$B.±$\frac{3}{2}$C.±$\frac{\sqrt{30}}{5}$D.±$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα=3,则cos2α=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=($\frac{sinB}{cosA}$)x+($\frac{sinA}{cosB}$)x,其中A、B为△ABC的内角,如果对任意x>0都有f(x)<2,那么(  )
A.0<A+B<$\frac{π}{4}$B.0<A+B<$\frac{π}{2}$C.$\frac{π}{2}$<A+B<$\frac{3π}{4}$D.A+B>$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题:
(1)“若am2≥bm2,则a≥b”的否命题;
(2)“全等三角形面积相等”的逆命题;
(3)“若a>1,则关于x的不等式ax2≥0的解集为R”的逆否命题;
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥V-ABC中,平面VAV⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别AB,VA的中点.
(Ⅰ)求证:VB∥平面 M OC;
(Ⅱ)求三棱锥V-A BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,将正方形ABCD沿对角线AC折成一个直二面角,则异面直线AB和CD所成的角是(  )
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案