精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=( x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是(
A.(2,3)
B.
C.
D.

【答案】C
【解析】解:由题意f(x﹣2)=f(x+2),可得f(x+4)=f(x), 周期T=4,当x∈[﹣2,0]时,f(x)=( x﹣1,
∴可得(﹣2,6]的图象如下:

从图可看出,要使f(x)的图象与y=loga(x+2)的图象恰有3个不同的交点,
则需满足
解得:
故选C.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数 ,x∈R的图象,只需把函数y=2sinx,x∈R的图象上所有的点(
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍纵坐标不变)
B.向右平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍(纵坐标不变)
C.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
D.向右平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx,g(x)= +mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=3sin(2x+ )的图象向右平移 个单位长度,所得图象对应的函数(
A.在区间( )上单调递减
B.在区间( )上单调递增
C.在区间(﹣ )上单调递减
D.在区间(﹣ )上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数),曲线在与轴的交点 处的切线斜率为.

(1)求的值及函数的单调区间;

(2)若,且,试证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)求的单调区间;

(2)设,且有两个极值点,其中,求的最小值;

(3)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 ﹣3(ω>0)
(1)若 是最小正周期为π的偶函数,求ω和θ的值;
(2)若g(x)=f(3x)在 上是增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,在区间(﹣∞,0)单调递增且f(﹣1)=0.若实数a满足 ,则实数a的取值范围是(
A.[1,2]
B.
C.(0,2]
D.

查看答案和解析>>

同步练习册答案