【题目】设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=( )x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是( )
A.(2,3)
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】为了得到函数 ,x∈R的图象,只需把函数y=2sinx,x∈R的图象上所有的点( )
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍纵坐标不变)
B.向右平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍(纵坐标不变)
C.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
D.向右平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx,g(x)= +mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=3sin(2x+ )的图象向右平移 个单位长度,所得图象对应的函数( )
A.在区间( , )上单调递减
B.在区间( , )上单调递增
C.在区间(﹣ , )上单调递减
D.在区间(﹣ , )上单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2 ﹣3(ω>0)
(1)若 是最小正周期为π的偶函数,求ω和θ的值;
(2)若g(x)=f(3x)在 上是增函数,求ω的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,在区间(﹣∞,0)单调递增且f(﹣1)=0.若实数a满足 ,则实数a的取值范围是( )
A.[1,2]
B.
C.(0,2]
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com