精英家教网 > 高中数学 > 题目详情

【题目】在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列.
(1)求角B的大小;
(2)求2sin2A+cos(A﹣C)的取值范围.

【答案】
(1)解: ∵2bcosB=acosC+ccosA,∴2sinBcosB=sinAcosC+cosAsinC.

∴2sinBcosB=sin(A+C),又∵A+C=π﹣B0<B<π,

,即


(2)解: 由(1)得: ,△ABC为锐角三角形,

,∴

=

即2sin2A+cos(A﹣C)


【解析】(1)利用正弦定理、等差数列的定义和性质以及诱导公式可得 ,由此求得角B的大小.(2)三角函数的恒等变换把要求的式子化为 ,根据角A的范围,求出
范围.
【考点精析】本题主要考查了等差数列的性质的相关知识点,需要掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:

分组

频数

频率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合计

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若平面区域 夹在两条斜率为 的平行直线之间,则这两平行直线间的距离的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为原点的直角坐标系中,点A(4,﹣3)为△OAB的直角顶点,已知AB=2OA,且点B的纵坐标大于0
(1)求 的坐标;
(2)求圆C1:x2﹣6x+y2+2y=0关于直线OB对称的圆C2的方程;在直线OB上是否存在点P,过点P的任意一条直线如果和圆C1圆C2都相交,则该直线被两圆截得的线段长相等,如果存在求出点P的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 ,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,曲线 .

(Ⅰ)写出 的直角坐标方程;

(Ⅱ)点 分别是曲线 上的动点,且点轴的上侧,点轴的左侧, 与曲线相切,求当最小时,直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>b>1,0<c<1,则( )
A.ac<bc
B.abc<bac
C.ca<cb
D.logac<logbc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(x﹣m﹣9)<0}
(1)求A∩B;
(2)若AC,求实数 m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切.
(1)求直线l1的方程;
(2)设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2 , 直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案