【题目】已知函数.
(1)讨论函数的单调性;
(2)证明:当a=3时,函数有且只有两个零点.
【答案】(1)分类讨论,详见解析;(2)详见解析.
【解析】
(1)由,分和两种情况进行讨论得出函数的单调性.
(2)函数有且只有两个零点,即方程有且只有两个实数根,即有且只有两个实数根,设,求出导数,求出函数的单调区间,结合零点存在原理得出结论,使得问题得证.
解:(1)的定义域为,.
①时,,则在是单调递增;
②时,由得,当时,,单调递减;
当时,,单调递增.
综上,时在是单调递增;
时,在单调递减,在单调递增.
(2).,令,
则,令,
显然时,,
时,,所以在上单调递增.
,
易知存在唯一,使,且时,,即,单调递减;
时,,即,单调递增,
所以至多有两个零点.又,,,
故在区间和各有一个零点.所以函数有且只有两个零点.
科目:高中数学 来源: 题型:
【题目】设A,B,C,D为平面内的四点,且A(1,3),B(2,–2),C(4,1).
(1)若,求D点的坐标;
(2)设向量,,若k–与+3平行,求实数 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列满足:存在正整数T,对于任意正整数n都有成立,则称数列为周期数列,周期为T.已知数列满足,,则下列结论中错误的是( )
A.若,则m可以取3个不同的值;
B.若,则数列是周期为3的数列;
C.对于任意的且T≥2,存在,使得是周期为的数列
D.存在且,使得数列是周期数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠APC=90°,∠BPD=120°,PB=PD.
(1)求证:平面APC⊥平面BPD;
(2)若AB=2AP=2,求三棱锥C-PBD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年入冬以来,各地雾霾天气频发,频频爆表(是指直径小于或等于微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | 50 | 51 | 54 | 57 | 58 |
的浓度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)请根据上述数据,在上面给出的坐标系中画出散点图;
(2)试判断与是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点的极坐标为,圆以为圆心,4为半径;又直线的极坐标方程为。
(Ⅰ)求直线和圆的普通方程;
(Ⅱ)试判定直线和圆的位置关系.若相交,则求直线被圆截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年1月10日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗体与上次接种无关.
(1)求一个接种周期内出现抗体次数的分布列;
(2)已知每天接种一次花费100元,现有以下两种试验方案:
①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;
②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.
比较随机变量和的数学期望的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com