精英家教网 > 高中数学 > 题目详情

【题目】某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为 吨,(0≤t≤24)
(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?
(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象.

【答案】
(1)解:设t小时后蓄水池中的水量为y吨,

=x;则x2=6t,即y=400+10x2﹣120x=10(x﹣6)2+40;

∴当x=6,即t=6时,ymin=40,

即从供水开始到第6小时时,蓄水池水量最少,只有40吨


(2)解:依题意400+10x2﹣120x<80,得x2﹣12x+32<0

解得,4<x<8,即

即由 ,所以每天约有8小时供水紧张


【解析】(1)根据题意先设t小时后,蓄水池中的存水量为y吨.写出蓄水池中的存水量的函数表达式,再利用换元法求此函数的最小值即得;(2)先由题意得:y≤80时,就会出现供水紧张.由此建立关于x的不等关系,最后解此不等式即得一天中会有多少小时出现这种供水紧张的现象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为( )
(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.

A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +a(a∈R)为奇函数
(1)求a的值;
(2)当0≤x≤1时,关于x的方程f(x)+1=t有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯关时,转次,当次转得数字之和大于时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍,假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.

(1)求某人参加一次游戏,恰好获得10欧元的概率;

(2)某人参加一次游戏,获得奖金欧元,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)= 是“可构造三角形函数”,则实数t的取值范围是( )
A.[0,+∞)
B.[0,1]
C.[1,2]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于三次函数f(x)=ax3bx2cxd(a0),给出定义f(x)是函数yf(x)的导数f(x)f(x)的导数若方程f(x)=0有实数解x0则称点(x0f(x0))为函数yf(x)的“拐点”.某同学经过探究发现任何一个三次函数都有对称中心且“拐点”就是对称中心请你根据这一发现判断函数的对称中心为(  )

A. (,1) B. (-,1) C. (,-1) D. (-,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kax﹣ax(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)>0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈[1,2],x2≥a;命题q:x∈R,x2+2ax+2﹣a=0,若命题p∧q是真命题,则实数a的取值范围是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的定义域和值域;
(2)若f(x)≤1,求x的取值范围.

查看答案和解析>>

同步练习册答案