精英家教网 > 高中数学 > 题目详情

【题目】若实数满足的取值范围为________

【答案】

【解析】

4种情况进行讨论,对于每种情况,作出相应的可行域,再作出目标函数对应的直线,平移该直线,即可求出每种情况中的取值范围,从而得解.

设目标函数

分四种情况:

1)当时,

画出满足条件的平面区域,如图所示,

满足约束条件的平面区域,只有一个点,此时

2)当时,

满足约束条件的平面区域不存在;

3)当时,

画出满足条件的平面区域,如图所示,

,得

显然直线过的交点时,最小,

,解得,此时

直线过的交点时,最大,

,解得,此时

4)当时,

画出满足条件的平面区域,如图所示,

,得

显然直线过的交点时,最小,

,解得,此时

直线过的交点时,最大,

,解得,此时.

综上可知,的最小值为,最大值为8

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标.现从采集的血液样品中抽取500份检测指标的值,由测量结果得下侧频率分布直方图:

1)求这500份血液样品指标值的平均数和样本方差(同一组数据用该区间的中点值作代表,记作);

2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中近似为样本平均数近似为样本方差.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标的值,结果发现4名医生血液中指标的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.

附:参考数据与公式:;若,则①;②;③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列的极限一节,课本中给出了计算由抛物线轴以及直线所围成的曲边区域面积的一种方法:把区间平均分成份,在每一个小区间上作一个小矩形,使得每个矩形的左上端点都在抛物线上(如图),则当时,这些小矩形面积之和的极限就是.已知.利用此方法计算出的由曲线轴以及直线所围成的曲边区域的面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线平面,垂足为,正四面体的棱长为2分别是直线和平面上的动点,且,则下列判断:①点到棱中点的距离的最大值为;②正四面体在平面上的射影面积的最大值为.其中正确的说法是( ).

A.①②都正确B.①②都错误C.①正确,②错误D.①错误,②正确

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且存在,使得,设

)证明单调递增;

)求证:

)记,其前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为正整数,各项均为正整数的数列满足:,记数列的前项和为

1)若,求的值;

2)若,求的值;

3)若为奇数,求证:的充要条件是为奇数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为提升中学生的数学素养,激发学生学习数学的兴趣,举办了一次数学文化知识大赛,分预赛和复赛两个环节.已知共有8000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下频率分布直方图.

1)规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求恰有1人预赛成绩优良的概率;

2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布Nμσ2),其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且σ2362.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于91分的人数;

3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下:①每人的复赛初始分均为100分;②参赛学生可在开始答题前自行决定答题数量n,每一题都需要掉(即减去)一定分数来获取答题资格,规定答第k题时掉的分数为0.1kk∈(12n));③每答对一题加1.5分,答错既不加分也不减分;④答完n题后参赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.7,且每题答对与否都相互独立.若学生甲期望获得最佳的复赛成绩,则他的答题数量n应为多少?

(参考数据:;若ZNμσ2),则PμσZμ+σ≈0.6827PμZμ+2σ≈0.9545PμZμ+3σ≈0.9973

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知2a2bcosC+csinB

(Ⅰ)求tanB

(Ⅱ)若CABC的面积为6,求BC

查看答案和解析>>

同步练习册答案