分析 根据题意,由函数的解析式可得f(a)=a2+lg(a+$\sqrt{{a}^{2}+1}$)①,f(-a)=(-a)2+lg(-a+$\sqrt{{a}^{2}+1}$)=a2-lg(a+$\sqrt{{a}^{2}+1}$)②,将①与②相加可得f(a)+f(-a)=2a2,将f(a)=M代入可得答案.
解答 解:根据题意,函数f(x)=x2+lg(x+$\sqrt{{x}^{2}+1}$),
则f(a)=a2+lg(a+$\sqrt{{a}^{2}+1}$),①
f(-a)=(-a)2+lg(-a+$\sqrt{{a}^{2}+1}$)=a2-lg(a+$\sqrt{{a}^{2}+1}$),②
①+②可得:f(a)+f(-a)=2a2,
而f(a)=M,
则f(-a)=2a2-M,
故答案为:2a2-M.
点评 本题考查函数的求值,关键利用对数的运算性质进行分析,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [3,+∞) | B. | (1,2] | C. | [1,4] | D. | [1,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com