精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位建立坐标系.已知直线的极坐标方程为,曲线的参数方程为为参数).

(1)求曲线的普通方程和直线的直角坐标方程;

(2)直线上有一点设直线与曲线相交于两点,求的值.

【答案】(1);(2)

【解析】分析:第一问首先利用平方关系将参数消掉,将其化为普通方程,将与直线l的极坐标方程对比,代入,即可得其直角坐标方程;第二问将直线的参数方程与椭圆方程联立,利用韦达定理求得两根积,结合直线参数方程中其几何意义求得结果.

详解:(1)曲线的参数方程为为参数),利用可得普通方程由直线的极坐标方程为可得直角坐标方程为:

(2)由于在直线上,可得直线的参数方程为参数)代入椭圆方程可得所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,P为⊙O外一点,PC交⊙O于F,C,PA切⊙O于A,B为线段PA的中点,BC交⊙O于D,线段PD的延长线与⊙O交于E,连接FE.求证:
(Ⅰ)△PBD∽△CBP;
(Ⅱ)AP∥FE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差

1假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0001,计算这次地震的震级精确到01

25级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?

以下数据供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 在统计学中,回归分析是检验两个分类变量是否有关系的一种统计方法

B. 线性回归方程对应的直线至少经过其样本数据点中的

一个点

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D. 在回归分析中,相关指数的模型比相关指数的模型拟合的效果差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2002年北京国际数学家大会会标,是以中国古代数学家赵爽的弦图为基础而设计的,弦图用四个全等的直角三角形与一个小正方形拼成的一个大正方形如图,若大、小正方形的面积分别为25和1,直角三角形中较大锐角为,则等于  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设

(1)求函数的最小正周期;

(2)当时,求函数的最大值及最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“渐减数”是指每个数字比其左边数字小的正整数(如98765),若把所有的五位渐减数按从小到大的顺序排列,则第20个数为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面以任意角度截正方体,所截得的截面图形可以是_____填上所有你认为正确的序号

正三边形 正四边形 正五边形 正六边形 钝角三角形 等腰梯形 非矩形的平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为 ,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

查看答案和解析>>

同步练习册答案