精英家教网 > 高中数学 > 题目详情
13.祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等,现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )
A.①②B.①③C.②④D.①④

分析 利用祖暅原理分析题设中的四个图形,能够得到在①和④中的两个几何体满足祖暅原理.

解答 解:在①和④中,
夹在两个平行平面之间的这两个几何体,
被平行于这两个平面的任何一个平面所截,
截面面积都相等,
∴①④这两个几何体的体积一定相等.
故选:D.

点评 本题考查满足祖暅原理的两个几何体的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一个周期内的图象如图所示.
(1)求函数f(x)的解析式与单调递减区间;
(2)函数f(x)的图象上所有点的横坐标扩大到原来的2倍,再向右平移$\frac{π}{2}$个单位长度,得到g(x)的图象,求函数y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.甲、乙两人从6门课程中各选修3门,则甲、乙所选的课程中恰有1门相同的选法有180种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.△ABC的内角A,B,C的对边分别为a,b,c.若a2+c2-b2=ac,c=2,点G满足|$\overrightarrow{BG}$|=$\frac{\sqrt{19}}{3}$且$\overrightarrow{BG}$=$\frac{1}{3}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),则sinA=$\frac{3\sqrt{21}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{ln(x+1),x>0}\\{\frac{1}{2}x+1,x≤0}\end{array}\right.$,若m<n,且f(m)=f(n),则n-m的取值范围是[3-2ln2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合 A={x|-2<x<3},B={x|x≥m}.若 A∩B=∅,则实数m的取值范围是(  )
A.(-∞,3]B.(-2,3]C.(-∞,-2)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若b2+c2=a2-bc,则∠A=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x 2cosx的导数为(  )
A.y′=2xcosx-x 2sinxB.y′=2xcosx+x 2sinx
C.y′=x 2cosx-2xsinxD.y′=xcosx-x 2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的倾斜角是直线l:x-2y+1=0倾斜角的两倍,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{5}{4}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案