精英家教网 > 高中数学 > 题目详情
(2012•潍坊二模)如图,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=
12
BC=2,AC=CD=3.
(Ⅰ)证明:EO∥平面ACD;
(Ⅱ)证明:平面ACD⊥平面BCDE;
(Ⅲ)求三棱锥E-ABD的体积.
分析:(I)如图,取BC的中点M,连接O同、ME.在三角形ABC中,利用中位线定理得到OM∥AC,再证出四边形MCDE是平行四边形,结合面面平行的判定得到面EMO∥面ACD,最后利用面面平行的性质即可得出结论;
(II)根据AB是圆的直径,C点在圆上,得到直径所结的圆周角是直角,又平面BDCE⊥平面ABC,从而有AC⊥平面BDCE,最后利用面面垂直的判定即可得出平面ACD⊥平面BCDE;
(III)由(II)知AC⊥平面ABDE,可得AC是三棱锥A-BDE的高线,再将三棱锥E-ABD的体积转化为三棱锥A-BDE的体积求解即可.
解答:解:(I)如图,取BC的中点M,连接O同、ME.
在三角形ABC中,O是AB的中点,M是BC的中点,
∴OM∥AC,
在直角梯形BCDE中,DE∥BC,且DE=CM,
∴四边形MCDE是平行四边形,∴EM∥CD,
∴面EMO∥面ACD,
又∵EO?面EMO,
∴EO∥面ACD.(8分)
(II)∵AB是圆的直径,C点在圆上,
∴AC⊥BC,又∵平面BDCE⊥平面ABC,平面BDCE∩平面ABC=BC
∴AC⊥平面BDCE,∵AC?平面ACD,
∴平面ACD⊥平面BCDE;
(III)由(II)知AC⊥平面ABDE,可得AC是三棱锥A-BDE的高线,
∵Rt△BDE中,S△BDE=
1
2
DE×CD=
1
2
×2×3=3.
因此三棱锥E-ABD的体积=三棱锥A-BDE的体积=
1
3
×
S△BDE×AC=
1
3
×3×3=3.
点评:本题给出一个特殊的几何体,通过求证线面垂直和求体积,着重考查了空间直线与平面平行、平面与平面垂直的判定和性质,考查了锥体体积公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•潍坊二模)①函数y=sin(x-
π
2
)
在[0,π]上是减函数;
②点A(1,1)、B(2,7)在直线3x-y=0两侧;
③数列{an}为递减的等差数列,a1+a5=0,设数列{an}的前n项和为Sn,则当n=4时,Sn取得最大值;
④定义运算
.
a1
b1
a2
b2
.
=a1b2-a2b1
则函数f(x)=
.
x2+3x
x
1
1
3
x
.
的图象在点(1,
1
3
)
处的切线方程是6x-3y-5=0.
其中正确命题的序号是
②④
②④
(把所有正确命题的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知两条直线a,b与两个平面α、β,b⊥α,则下列命题中正确的是(  )
①若a∥α,则a⊥b;
②若a⊥b,则a∥α; 
③若b⊥β,则α∥β;
④若α⊥β,则b∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知向量
a
=(x,-2),
b
=(y,1),其中x,y都是正实数,若
a
b
,则t=x+2y的最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a=f(-
1
2
),b=f(2),c=f(3),则a、b、c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知双曲线C:
x2
4
-
y2
5
=1
的左、右焦点分别为F1、F2,P为C的右支上一点,且|PF2|=|F1F2|,则
PF1
PF2
等于(  )

查看答案和解析>>

同步练习册答案