精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中的导函数,设,且恒成立.

1)求的取值范围;

2)设函数的零点为,函数的极小值点为,求证:.

【答案】1;(2)证明见解析

【解析】

1)先对函数求导,得到,推出,求导,得到,解对应不等式,得到单调性,求出其最小值,再根据恒成立,即可得出结果;

2)先设,求导得.

,对其求导,判定单调性,从而得到函数单调性,得到是函数的极小值点,得到,再由(1)得时,,推出所以,得到,得到函数在区间上单调递增,再由题意,即可得出结论成立.

1)由题设知,

,得,所以函数在区间上是增函数;

,得,所以函数在区间上是减函数.

处取得最小值,且.

由于恒成立,所以,得

所以的取值范围为

2)设,则.

故函数在区间上单调递增,由(1)知,

所以

故存在,使得

所以,当时,,函数单调递减;

时,,函数单调递增.

所以是函数的极小值点.因此,即.

由(1)可知,当时,,即,整理得

所以.

因此,即.

所以函数在区间上单调递增.

由于,即

所以.

又函数在区间上单调递增,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,则下列结论正确的个数有(

是函数图像的一条对称轴

是函数图像的一个对称中心

③将函数图像向右平移单位所得图像的解析式为得

④函数在区间内单调递增

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数是奇函数,的定义域为.当时, .(e为自然对数的底数).

(1)若函数在区间上存在极值点,求实数的取值范围;

(2)如果当x≥1时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 平面平面 分别为中点.

1)求证:

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形ABCD中,∠BAD=60°ACBD相交于点O.将△ABD沿BD折起,使顶点A至点M,在折起的过程中,下列结论正确的是(

A.BDCM

B.存在一个位置,使△CDM为等边三角形

C.DMBC不可能垂直

D.直线DM与平面BCD所成的角的最大值为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是( ).

①在中,若,则是等腰三角形;

②在中,若 ,则

③两个向量共线的充要条件是存在实数,使

④等差数列的前项和公式是常数项为0的二次函数.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业引进现代化管理体制,生产效益明显提高.2018年全年总收入与2017年全年总收入相比增长了一倍,实现翻番.同时该企业的各项运营成本也随着收入的变化发生了相应变化.下图给出了该企业这两年不同运营成本占全年总收入的比例,下列说法正确的是(

A.该企业2018年原材料费用是2017年工资金额与研发费用的和

B.该企业2018年研发费用是2017年工资金额、原材料费用、其它费用三项的和

C.该企业2018年其它费用是2017年工资金额的

D.该企业2018年设备费用是2017年原材料的费用的两倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面

(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的坐标分别为.三角形的两条边所在直线的斜率之积是.

1)求点的轨迹方程;

2)设直线方程为,直线方程为,直线,点关于轴对称,直线轴相交于点.的面积为,求的值.

查看答案和解析>>

同步练习册答案