精英家教网 > 高中数学 > 题目详情
设A,B,C为单位圆O上不同的三点,则点集A={(x,y)|
OC
=x
OA
+y
OB
,0<x<2,0<y<2}
所对应的平面区域的面积为(  )
A、1
B、
3
2
C、2
D、
5
2
分析:利用数量积的性质将
OC
=x
OA
+y
OB
两边平方,再利用已知|
OA
|=|
OB
|=|
OC
|=1
,化为
1=x2+y2+2xycos∠AOB,由于0<x<2,0<y<2.从而由余弦定理可知x、y、1可以构成三角形,且∠AOB不是0°或180°.得到约束条件,画出可行域即可得出.
解答:精英家教网解:将
OC
=x
OA
+y
OB
两边平方得:
OC
2
=x2
OA
2
+y2
OB
2
+2xy
OA
OB
cos∠AOB

|
OA
|=|
OB
|=|
OC
|=1

∴1=x2+y2+2xycos∠AOB,
∵0<x<2,0<y<2.
从而由余弦定理可知x、y、1可以构成三角形,且∠AOB不是0°或180°.
于是有:
|x|+|y|≥1
|x|+1≥|y|
|y|+1≥|x|
0<x<2,0<y<2
,化为
x+y≥1
x+1≥y
y+1≥x
0<x<2,0<y<2

画出平面区域,结合图形可知约束条件表示的图形为阴影区域内,
∴表示的平面区域的面积是4-3×
1
2
=
5
2

故答案为:
5
2
点评:本题考查了数量积的性质、余弦定理、构成三角形的条件、线性规划问题,考查了问题的转化能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A,B,C三点对应的复数分别为z1,z2,z3满足z1+z2+z3=0,且|z1|=|z2|=|z3|=1
(1)证明:△ABC是内接于单位圆的正三角形;
(2)求SABC;

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B,C为单位圆O上不同的三点,则点集A={(x,y)|
OC
=x
OA
+y
OB
,(0<x<2,0<y<2)}所对应的平面区域的面积为
5
2
5
2

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第107-110课时):第十四章 复数-复数的代数形式及其运算(解析版) 题型:解答题

设A,B,C三点对应的复数分别为z1,z2,z3满足z1+z2+z3=0,且|z1|=|z2|=|z3|=1
(1)证明:△ABC是内接于单位圆的正三角形;
(2)求SABC;

查看答案和解析>>

同步练习册答案