【题目】已知正项数列{an}的前n项和为Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,证明: ≤Tn<1(n∈N+).
【答案】解:(Ⅰ)当n=1时,4a1=(a1+1)2 , 解得:a1=1, 当n≥2时,4Sn﹣1=(an﹣1+1)2 , 4Sn=(an+1)2 ,
两式相减得:(an+an﹣1)(an﹣an﹣1﹣2)=0,
∵an>0,
∴an﹣an﹣1=2,
∴数列{an}是以2为公差,以1为首项的等差数列,
∴an=2n﹣1;
证明:(Ⅱ) = = ﹣ ,
∴Tn=(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ ),
=1﹣ ,
∴Tn<1,
>0,
∴Tn≥T1= .
∴ ≤Tn<1(n∈N+)
【解析】(Ⅰ)当n=1时,即可求得a1=1,当n≥2时,4Sn﹣1=(an﹣1+1)2 , 4Sn=(an+1)2 , 两式相减可得:(an+an﹣1)(an﹣an﹣1﹣2)=0,可知:an﹣an﹣1=2,数列{an}是以2为公差,以1为首项的等差数列,即可求得数列{an}的通项公式;(Ⅱ) = ﹣ ,根据“裂项法”即可求得Tn=1﹣ ,Tn<1,由Tn≥T1= .即可证明 ≤Tn<1(n∈N+).
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.
(1)求证:PE⊥BD;
(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,求 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin2x﹣2cos2x,下面结论中错误的是( )
A.函数f(x)的最小正周期为π
B.函数f(x)的图象关于x= 对称
C.函数f(x)的图象可由g(x)=2sin2x﹣1的图象向右平移 个单位得到
D.函数f(x)在区间[0, ]上是增函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为,(为参数),圆的标准方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系.
(1)求直线和圆的极坐标方程;
(2)若射线与的交点为,与圆的交点为,且点恰好为线段的中点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位安排位员工在春节期间大年初一到初七值班,每人值班天,若位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过):
空气质量指数 | ||||||
空气质量等级 | 级优 | 级良 | 级轻度污染 | 级中度污染 | 级重度污染 | 级严重污染 |
该社团将该校区在年天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校年月、日将作为高考考场,若这两天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这两天净化空气总费用为元,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com