精英家教网 > 高中数学 > 题目详情

【题目】若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程是ρ=
(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l的参数方程为 (t为参数)当直线l与曲线C相交于A,B两点,求| |

【答案】
(1)解:∵ρ= ,∴ρ2sin2θ=6ρcosθ,

∴曲线C的直角坐标方程为y2=6x.曲线为以( ,0)为焦点,开口向右的抛物线.


(2)解:直线l的参数方程可化为 ,代入y2=6x得t2﹣4t﹣12=0.

解得t1=﹣2,t2=6.

∴| |=|t1﹣t2|=8


【解析】(1)将极坐标方程两边同乘ρ,去分母即可得到直角坐标方程;(2)写出直线l参数方程的标准形式,代入曲线C的普通方程,根据参数的几何意义得出|AB|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=
(1)求cosβ的值;
(2)若点A的横坐标为 ,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)问:能否为偶函数?请说明理由;

(2)总存在一个区间,当时,对任意的实数,方程无解,当时,存在实数,方程有解,求区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.“sinα= ”是“cos2α= ”的必要不充分条件
B.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有 ,则p∧(¬q)是真命题
C.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分成抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图后,记“输出是好点”为事件A.

(1)若为区间内的整数值随机数,为区间内的整数值随机数,求事件A发生的概率;

(2)若为区间内的均匀随机数,为区间内的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= sinxcosx+cos2x,锐角△ABC的三个角A,B,C所对的边分别为a,b,c. (Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若f(C)=1,求m= 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:

若以上表中频率作为概率,且每天的销售量相互独立.

(1)求5天中该种商品恰好有两天的日销售量为1.5吨的概率;

(2)已知每吨该商品的销售利润为2千元, 表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.

查看答案和解析>>

同步练习册答案