精英家教网 > 高中数学 > 题目详情

已知点A(-,0),点B(,0),且动点P满足|PA|-|PB|=2,则动点P的轨迹与直线y=k(x-2)有两个交点的充要条件为k∈________.

 

【答案】

(-∞,-1)∪(1,+∞)

【解析】由已知得动点P的轨迹为一双曲线的右支且2a=2,c=,则b==1,所以P点的轨迹方程为x2-y2=1(x>0),其一条渐近线方程为y=x.若P点的轨迹与直线y=k(x-2)有两个交点,

则需k∈(-∞,-1)∪(1,+∞).

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点A ( 
1
2
 , 0 )
,点B在直线l:x=-
1
2
上运动,过点B与l垂直的直线和AB的中垂线相交于点M.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设点P是轨迹E上的动点,点R,N在y轴上,圆C:(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-
2
,0),B(
2
,0)
,P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是-
1
2

(Ⅰ)求动点P的轨迹C的方程,并求出曲线C的离心率的值;
(Ⅱ)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸一模)在平面直角坐标系中,点P(x,y)为动点,已知点A(
2
,0)
B(-
2
,0)
,直线PA与PB的斜率之积为-
1
2

(I)求动点P轨迹E的方程;
( II)过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M、Q不重合),求证:直线MQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点A ( 
1
2
 , 0 )
,点B在直线l:x=-
1
2
上运动,过点B与l垂直的直线和AB的中垂线相交于点M.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设点P是轨迹E上的动点,点R,N在y轴上,圆C:
x=1+cosθ
y=sinθ     
(θ为参数)内切于△PRN,求△PRN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(
2
,0)
,动点M,N满足
OA
+
OM
=2
ON
,其中O是坐标原点,若KAM•K ON=-
1
2

(1)求点M的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个共公点,且l1⊥l2,求h的值.

查看答案和解析>>

同步练习册答案