【题目】现有7道题,其中5道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的两道题都是甲类题的概率;
(2)所取的两道题不是同一类题的概率.
【答案】(1)所取的两道题都是甲类题的概率为;(2)所取的两道题不是同一类题的概率为
【解析】
试题(1)根据题意,设事件A为“都是甲类题”,由组合数原理,可得试验结果总数与A包含的基本事件数目,由古典概率公式计算可得答案,(2)设事件B为“所取的2道题不是同一类题”,分析可得是组合问题,由组合公式,可得从6件中抽取2道的情况数目与抽出的2道是一个甲类题,一个乙类题的情况数目,由古典概率公式计算可得答案.
试题解析:(1)将5道甲类题依次编号为1,2,3,4,5;将2道乙类题依次编号为6,7.任取2道题,基本事件为:,共21个,而且这些基本事件出现是等可能的.用A表示“都是甲类题”这一事件,则A包含的基本事件有,共10个,所以;
(2)用B表示“不是同一类题”这一事件,则B包含的基本事件有,共10个,所以.
科目:高中数学 来源: 题型:
【题目】为了响应市政府迎接全国文明城市创建活动的号召,某学校组织学生举行了文明城市创建知识类竞赛,为了了解本次竞赛中学生的成绩情况,从中抽取名学生的分数(满分为100分,得分取正整数,抽取学生的分数均在之内)作为样本进行统计,按照分成组,并作出如下频率分布直方图,已知得分在的学生有人.
求频率分布直方图中的的值,并估计学生分数的众数、平均数和中位数:
如果从三个分数段的学生中,按分层抽样的方法抽取人参与座谈会,然后再从两组选取的人中随机抽取人作进一步的测试,求这人中恰有一人得分在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.共生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
已知,.
(1)已知变量,只有线性相关关系,求产品销量(件)关于试销单价(元)的线性回方程;
(2)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的差的绝对值时,则将售数数称为一个“好数据”.现从6小销售数据中任取2个;求“好数据”至少有一个的概率.
(参考公式:线性回归方程中的最小二乘估计分别为,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若,则”的逆否命题是“若,则”
B.“”是“”的充分不必要条件
C.若为假命题,则、均为假命题
D.命题:“,使得”,则非:“,”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:,为参数点的极坐标为,曲线C的极坐标方程为.
Ⅰ试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;
Ⅱ设直线l与曲线C相交于两点A,B,点M为AB的中点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,已知,,,D是边AC上一点,将沿BD折起,得到三棱锥.若该三棱锥的顶点A在底面BCD的射影M在线段BC上,设,则x的取值范围为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com