精英家教网 > 高中数学 > 题目详情
设0≤x≤2,求函数y=4x-
1
2
-a•2x+
a2
2
+1
的最大值和最小值.
分析:本题中的函数是一个复合函数,求解此类函数在区间上的最值,一般用换元法,把复合函数的最值问题变为两个函数的最值问题,以达到简化解题的目的.本题宜先令2x=t,求出其范围,再求外层函数在这个区间上的最值.
解答:解:设2x=t,∵0≤x≤2,∴1≤t≤4
原式化为:y=
1
2
(t-a)2+1,1≤t≤4
当a≤1时,y=
1
2
(t-a)2+1[1,4]是增函数,故ymin=
a2
2
-a+
3
2
ymax=
a2
2
-4a+9

当1<a≤
5
2
时,y=
1
2
(t-a)2+1[1,a]是减函数,在[a,4]上是增函数,故ymin=1,ymax=y(4)=
a2
2
 -4a+9

5
2
<a<4时,y=
1
2
(t-a)2+1[1,a]是减函数,在[a,4]上是增函数,故ymin=1,ymax=y(1)=
a2
2
-a+
3
2

当a≥4时,ymin=
a2
2
-4a+9,ymax=
a2
2
-a+
3
2
点评:本题考点是指数函数单调性的应用,考查指数复合型函数最值的求法,做此题时,采取了换元法求最值,其具体操作过程是先求内层函数的值域,再求外层函数在内层函数值域上的最值,此解法大大降低了判断复合函数单调性的难度,使得复合函数最值的求解变得容易,求解复合函数的最值时注意灵活使用这一技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设0≤x≤2,求函数y=4x-
12
-2x+1+5的最大值和最小值,并指出相应x的取值?

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知奇函数f(x)在定义域[-2,2]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围;
(2)设0≤x≤2,求函数y=4x-3•2x+5的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤2,求函数y=4x-
12
-2x-1+5
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤2,求函数y=4x-
12
-2x+1+4
的最大值和最小值.

查看答案和解析>>

同步练习册答案