精英家教网 > 高中数学 > 题目详情

【题目】如图1,菱形ABCD的边长为12,∠BAD=60°,AC与BD交于O点.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=6
(I)求证:平面ODM⊥平面ABC;
(II)求二面角M﹣AD﹣C的余弦值.

【答案】证明:(Ⅰ)∵ABCD是菱形,

∴AD=DC,OD⊥AC,

△ADC中,AD=DC=12,∠ADC=120°,

∴OD=6,

又M是BC中点,∴

∵OD2+OM2=MD2,∴DO⊥OM,

∵OM,AC面ABC,OM∩AC=O,

∴OD⊥面ABC,

又∵OD平面ODM,∴平面ODM⊥平面ABC.…

(Ⅱ)解:由题意,OD⊥OC,OB⊥OC,

又由(Ⅰ)知OB⊥OD,建立如图所示空间直角坐标系,

由条件知:

设平面MAD的法向量

,即 ,令 ,则x=3,z=9

由条件知OB⊥平面ACD,故取平面ACD的法向量为

所以,

由图知二面角M﹣AD﹣C为锐二面角,

故二面角M﹣AD﹣C的余弦值为


【解析】(Ⅰ)推导出OD⊥AC,DO⊥OM,从而OD⊥面ABC,由此能证明平面ODM⊥平面ABC.(Ⅱ)由OD⊥OC,OB⊥OC,OB⊥OD,建立空间直角坐标系,利用向量法能求出二面角M﹣AD﹣C的余弦值.
【考点精析】根据题目的已知条件,利用平面与平面垂直的判定的相关知识可以得到问题的答案,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不等式ln(x+1)﹣1≤ax+b对一切x>﹣1都成立,则 的最小值是(
A.e﹣1
B.e
C.1﹣e3
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,动点P在其表面上运动,且|PA|=x,把点的轨迹长度L=f(x)称为“喇叭花”函数,给出下列结论: ① ;② ;③ ;④
其中正确的结论是: . (填上你认为所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若向量 ,在函数 的图象中,对称中心到对称轴的最小距离为 ,且当 的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为(参考数据: ≈1.732,sin15°≈0.2588,sin75°≈0.1305)(
A.2.598,3,3.1048
B.2.598,3,3.1056
C.2.578,3,3.1069
D.2.588,3,3.1108

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】变量x,y满足约束条件 ,若使z=ax+y取得最大值的最优解有无穷多个,则实数a的取值集合是(
A.{﹣3,0}
B.{3,﹣1}
C.{0,1}
D.{﹣3,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0)x∈[0,4]的图象,且图象的最高点为 ;赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°
(1)求A,ω的值和M,P两点间的距离;
(2)应如何设计,才能使折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.

(1)求证:BD⊥EG;
(2)求平面DEG与平面DEF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)= 为奇函数,则f﹣1(x)=2的解为

查看答案和解析>>

同步练习册答案