精英家教网 > 高中数学 > 题目详情
11.如图所示,已知多面体ABCD-A1B1C1D1是棱长为1的正方体.
(1)求证:平面AB1D1∥平面BDC1
(2)求四棱锥D1-AB1C1D的体积.

分析 (1)在平面AB1D1找两条相交直线AB1,AD1分别平行于平面BDC1
(2)连接D1C,设D1C∩C1D=O,证明D1O为四棱锥D1-AB1C1D的高,求出底面积,即可求四棱锥D1-AB1C1D的体积.

解答 (1)证明:由已知,在四边形DBB1D1中,BB1∥DD1且BB1=DD1
故四边形DBB1D1为平行四边形,即D1B1∥DB,-----2’
∵D1B1?平面DBC1,∴D1B1∥平面DBC1;-----3’
同理在四边形ADC1B1中,AB1∥DC1,-----4’
同理AB1∥平面DBC1,-------5’
又∵AB1∩D1B1=B1,-----6’
∴平面AB1D1∥平面BDC1.----7’
(2)解:连接D1C,设D1C∩C1D=O,
则在正方形D1CICD中,D1C⊥DC1,----8’
又在正方体ABCD-A1B1C1D1中,B1C1⊥平面C1CDD1
所以D1C⊥B1C1,----9’
∵DC1∩B1C1=C1,∴D1C⊥平面AB1C1D,--10’
即D1O为四棱锥D1-AB1C1D的高;
由已知,在正方形DCC1D1中,边长为1,
∴D1C=DC1=$\sqrt{2}$,∴四棱锥的高D1O=$\frac{\sqrt{2}}{2}$,----11’
又在正方体ABCD-A1B1C1D1中,四边形AB1C1D为矩形,且C1D=$\sqrt{2}$,B1C1=1,
故${S}_{A{B}_{1}{C}_{1}D}$=1×$\sqrt{2}$=$\sqrt{2}$----12’
∴${V}_{D-A{B}_{1}{C}_{1}D}$=$\frac{1}{3}×\frac{\sqrt{2}}{2}×\sqrt{2}$=$\frac{1}{3}$----14’

点评 本题考查平面与平面平行的判定,考查四棱锥D1-AB1C1D的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.点P的极坐标为$(2,\frac{5π}{6})$,以极点为原点,以极轴为x轴正方向建立直角坐标系,则点P的直角坐标为$(-\sqrt{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“a≥-1”是“函数f(x)=x2-2ax-2的减区间是(-∞,-1]”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求经过两直线l1:2x+y+2=0与l2:3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程;
(2)求与直线5x-12y+6=0平行,且到直线l的距离为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,正方体ABCD-A′B′C′D′中,AB的中点为E,AA′的中点为F,则直线D′F和直线CE(  )
A.都与直线DA相交,且交于同一点B.互相平行
C.异面D.都与直线DA相交,但交于不同点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等比数列{an}中,若a2?a6=8,则log2(a1?a7)等于(  )
A.8B.2C.16D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.四面体ABCD中,∠CBD=90°,AB⊥面BCD,点E、F分别为BC、CD的中点,过点E、F和四面体ABCD的外接球球心O的平面将四面体ABCD分成两部分,则较小部分的体积与四面体ABCD的体积之比为(  )
A.$\frac{1}{8}$B.$\frac{3}{16}$C.$\frac{1}{4}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知 P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是二等品”的概率为(  )
A.0.75B.0.25C.0.8D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)求与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦点,且经过点(3$\sqrt{2}$,2)的双曲线的标准方程.
(2)已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,求该双曲线的方程.

查看答案和解析>>

同步练习册答案