精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , a1=10,an+1=9Sn+10.
(1)求证:{lgan}是等差数列;
(2)设 对所有的n∈N*都成立的最大正整数m的值.

【答案】
(1)证明:依题意,

当n≥2时,an=9Sn1+10①又an+1=9Sn+10②

②﹣①整理得: 为等比数列,

且an=a1qn1=10n,∴lgan=n∴lgan+1﹣lgan=(n+1)﹣n=1,

即{lgan}n∈N*是等差数列.


(2)解:由(1)知,

=

依题意有

故所求最大正整数m的值为5.


【解析】(1)依题意可求得a2的值,进而求得 的值,进而看当n≥2时,根据an=Sn﹣Sn1求得 判断出数列为等比数列,进而根据等比数列的性质求得an , 进而分别表示出lgan和lgan+1 , 根据lgan+1﹣lgan=1,判断出lgan}n∈N*是等差数列.(2)根据(1)中求得an利用裂项法求得Tn , 进而根据3﹣ ,进而根据 求得m的范围.判断出m的最大正整数.
【考点精析】利用等差关系的确定和数列的前n项和对题目进行判断即可得到答案,需要熟知如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为梯形,AD∥BC,∠ABC=90°,AD=2,AB=4,BC=5,图中阴影部分(梯形剪去一个扇形)绕AB旋转一周形成一个旋转体.
(1)求该旋转体的表面积;
(2)求该旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: 所得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据按从小到大顺序排列,得到﹣1,0,4,x,7,14中位数为5,则这组数据的平均数为 , 方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,M为AB的中点,点F在PA上,且2PF=FA.

(1)求证:BE⊥平面PAC;
(2)求证:CM∥平面BEF;
(3)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是一个求20个数的平均数的程序,在横线上应填 ( )

A.i>20
B.i<20
C.i>=20
D.i<=20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA= acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,分别求a和c的值.

查看答案和解析>>

同步练习册答案