【题目】2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )
A.1150B.1380C.1610D.1860
科目:高中数学 来源: 题型:
【题目】某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型().若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( )
A.16时B.17时C.18时D.19时
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③设随机变量服从正态分布,若,则;
④对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大.其中正确的命题序号是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如下表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
参考公式:,其中
参考数据:
0.500 | 0.400 | 0.250 | 0.050 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
(1)根据上表数据判断能否有60%的把握认为“古文迷”与性别有关?
(2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
函数的最大值为1;
“,”的否定是“”;
若为锐角三角形,则有;
“”是“函数在区间内单调递增”的充分必要条件.
其中错误的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数,使其值域为,则称函数为的“渐近函数”.
(1)设,若在上有解,求实数取值范围;
(2)证明:函数是函数,的渐近函数,并求此时实数的值;
(3)若函数,,,证明:当时,不是的渐近函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xex-alnx(无理数e=2.718…).
(1)若f(x)在(0,1)单调递减,求实数a的取值范围;
(2)当a=-1时,设g(x)=x(f(x)-xex)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,,平面平面ABC,点D在线段BC上,且,F是线段AB的中点,点E是PD上的动点.
(1)证明:.
(2)当EF//平面PAC时,求三棱锥C-DEF的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com