精英家教网 > 高中数学 > 题目详情
2.一个三棱锥的三视图如图所示,则它的体积为(  )
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

分析 由三视图可知该三棱锥为棱长为2的正方体切割得到的,作出图形,结合图形代入体积公式计算.

解答 解:由三视图可知该三棱锥为棱长为2的正方体切割得到的.即三棱锥A1-MCD.
∴V=$\frac{1}{3}$×$\frac{1}{2}$×2×2×2=$\frac{4}{3}$.
故选C.

点评 本题考查了常见几何体的三视图和体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.与函数y=|x|相等的函数是(  )
A.y=($\sqrt{x}$)2B.y=($\root{3}{x}$)3C.y=$\sqrt{{x}^{2}}$D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中xOy中,直线l的斜率为k且过点(0,$\sqrt{2}$),直线l与椭圆C:$\frac{{x}^{2}}{2}+{y}^{2}=1$相交于两点P和Q.
(Ⅰ)求斜率k的取值范围;
(Ⅱ)若点M为线段PQ的中点,椭圆C分别与x轴正半轴、y轴正半轴交于点A、B,问是否存在斜率k,使得$\overrightarrow{OM}$与$\overrightarrow{AB}$共线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式组:$\left\{\begin{array}{l}{\frac{2}{x-2}<-1}\\{1<|x|<3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在各项均为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(Ⅰ)求等比数列{an}的通项公式;
(Ⅱ)若cn=an•($\frac{2}{n+1}-λ$),n=1,2,3,…,且数列{cn}为单调递减数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象与x轴相邻两个交点间的距离为$\frac{π}{2}$,且图象上一个最低点为M($\frac{2π}{3}$,-2).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)当x∈[$\frac{π}{12}$,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设平面点集A={(x,y)|(x-1)2+(y-1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y-$\frac{1}{x}$≥0},则(A∪B)∩C所表示的平面图形的面积是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=sin2x+2sinxcosx+3cos2x,x∈R
(1)求函数的最小正周期;
(2)求函数的单调增区间;
(3)求x取何时,函数取得最大值为多少.

查看答案和解析>>

同步练习册答案