精英家教网 > 高中数学 > 题目详情
4.在三棱锥A-BCD中,AB=$\sqrt{6}$,其余各棱长都为2,则该三棱锥外接球的表面积为(  )
A.B.$\frac{16}{3}$πC.D.$\frac{20}{3}$π

分析 由题意画出几何体的图形,推出四面体的外接球的球心的位置,求出球的半径,即可求出三棱锥外接球的表面积.

解答 解:取 A B,CD的中点分别为 E,O,
连接 EO,AO,BO,由题意知AO=BO=$\sqrt{3}$.
又${A}{B}=\sqrt{6}$,所以 AO⊥BO,EO=$\frac{\sqrt{6}}{2}$,
易知三棱锥外接球的球心G在线段EO上,
有R2=AE2+GE2,R2=CO2+GO2
∴R2=($\frac{\sqrt{6}}{2}$)2+GE2,R2=12+($\frac{\sqrt{6}}{2}$-GE)2
求得${R^2}=\frac{5}{3}$,
所以其表面积为$\frac{20}{3}π$.
故选:D.

点评 考查四棱锥的外接球的半径的求法,考查空间想象能力,能够判断球心的位置是本题解答的关键,考查计算能力,转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“a、b∈C,则a-b=0⇒a=b”;
②“若a、b∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b;
③“若a、b、c、d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a、b、c、d∈Q,则a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
④若“x∈R,则|x|<1⇒-1<x<1”类比推出z∈C,则|z|<1⇒-1<z<1.
上述类比中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:
本数
人数
性别
012345
男生01432 2
女生001331
(I)分别计算男生、女生阅读名著本数的平均值x1,x2和方差$s_1^2$,$s_2^2$;
(II)从阅读4本名著的学生中选两名学生在全校交流读后心得,求选出的两名学生恰好是一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且Sn=2an+n.
(1)证明:数列{an-1}为等比数列;
(2)求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)为定义在[-1,1]上的偶函数,且在[0,1]上为单调递增函数,则f(2x+1)>f(${\frac{x}{2}$+1)的解集为[-1,-$\frac{4}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设$\overrightarrow a,\overrightarrow b$为单位向量,且$\overrightarrow a⊥\overrightarrow b$,若向量$\overrightarrow c$满足$|{\overrightarrow c-({\overrightarrow a+\overrightarrow b})}|=|{\overrightarrow a-\overrightarrow b}|$,则$|{\overrightarrow c}|$的最大值是(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知|$\overrightarrow a}$|=1,$\overrightarrow a$与$\overrightarrow b$的夹角是$\frac{π}{3}$,($\overrightarrow a+2\overrightarrow b$)•$\overrightarrow a$=3,则|$\overrightarrow b}$|的值是(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,复数z=a+bi(a,b∈R)的实部a记作Re(z),虚部b记作Im(z),则Re($\frac{1}{2-i}$)+Im($\frac{1}{2-i}$)=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知矩阵$M=[{\begin{array}{l}1&0\\ 2&2\end{array}}]$,求逆矩阵M-1的特征值.

查看答案和解析>>

同步练习册答案