精英家教网 > 高中数学 > 题目详情
14.下列各式正确的是(  )
A.43<33B.log0.54<log0.56C.($\frac{1}{2}$)-3>($\frac{1}{2}$)3D.lg1.6<lg1.4

分析 利用指数函数与对数函数单调性即可得出.

解答 解:∵43>33,log0.54>log0.56,$(\frac{1}{2})^{-3}>(\frac{1}{2})^{3}$,lg1.6>lg1.4.
故选:C.

点评 本题考查了指数函数与对数函数单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知,如图,空间四边形ABCD中,E、F分别是AB、AD的中点,求证:EF∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x+$\frac{4}{x}$,g(x)=2x+a,若?x1∈[$\frac{1}{2}$,3],?x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R)(若△ABC的顶点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则该三角形的重心坐标为G($\frac{{{x_1}+{x_2}+{x_3}}}{3}$,$\frac{{{y_1}+{y_2}+{y_3}}}{3}$).
(1)求点C的轨迹E的方程;
(2)若斜率为k的直线l与(1)中的曲线E交于不同的两点P、Q,且|$\overrightarrow{AP}$|=|$\overrightarrow{AQ}$|,试求斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.{an}是等差数列,{bn}是等比数列,若a2=b2>0,a4=b4>0,a2≠a4,b1>0,则(  )
A.a1<b1,a3<b3B.a1<b1,a3>b3C.a1<b1,a5>b5D.a1<b1,a5<b5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=lnx,g(x)=lnx-x+2.
(1)求函数g(x)的极大值;
(2)若关于x的不等式$mf(x)≥\frac{x-1}{x+1}$在[1,+∞)上恒成立,求实数m的取值范围;
(3)已知$α∈(0,\frac{π}{2})$,试比较f(tanα)与-cos2α的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知关于x的不等式组$\left\{\begin{array}{l}{4(x-1)+2>3x}\\{x-1<\frac{6x+a}{7}}\end{array}\right.$,有且只有三个整数解,则a的取值范围是(  )
A.-2≤a≤-1B.-2≤a<-1C.-2<a≤-1D.-2<a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l1:(a-1)x+y+3=0,直线l2:2x+ay+1=0,若l1∥l2,则a=(  )
A.-1B.2C.-1,2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列的前4项为1,-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,则此数列的通项公式可以是(  )
A.(-1)n$\frac{1}{n}$B.(-1)n+1$\frac{1}{n}$C.(-1)n$\frac{1}{n+1}$D.(-1)n+1$\frac{1}{n-1}$

查看答案和解析>>

同步练习册答案