精英家教网 > 高中数学 > 题目详情
(2013•辽宁)设函数f(x)满足x2f′(x)+2xf(x)=
ex
x
,f(2)=
e2
8
,则x>0时,f(x)(  )
分析:先利用导数的运算法则,确定f(x)的解析式,再构造新函数,确定函数的单调性,即可求得结论.
解答:解:∵函数f(x)满足x2f′(x)+2xf(x)=
ex
x

[x2f(x)]′=
ex
x

∴x>0时,x2f(x)=
+∞
0
ex
x
dx
f(x)=
+∞
0
ex
x
dx
x2

f′(x)=
ex-2
+∞
0
ex
x
dx
x3

令g(x)=ex-2
+∞
0
ex
x
dx
,则g′(x)=ex-
2ex
x
=ex(1-
2
x
)

令g′(x)=0,则x=2,∴x∈(0,2)时,g′(x)<0,函数单调递减,x∈(2,+∞)时,g′(x)>0,函数单调递增
∴g(x)在x=2时取得最小值
∵f(2)=
e2
8
,∴g(2)=e2-2×4×
e2
8
=0
∴g(x)≥g(2)=0
f′(x)=
ex-2
+∞
0
ex
x
dx
x3
≥0
即x>0时,f(x)单调递增
∴f(x)既无极大值也无极小值
故选D.
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•辽宁)设向量
a
=(
3
sinx,sinx)
b
=(cosx,sinx)
x∈[0,
π
2
]

(1)若|
a
|=|
b
|
,求x的值;
(2)设函数f(x)=
a
b
,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁二模)设f(x)是定义在R上的偶函数,它在[0,+∞)上为增函数,且f(
1
3
)>0,则不等式f(log
1
8
x
)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)甲乙两人进行乒乓球对抗赛,约定每局胜者得1分,负者得0分,比赛进行到有一个比对方多2分或打满6局时停止.设甲在每局中获胜的概率为P(P>
1
2
)
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
9
.若图为统计这次比赛的局数n和甲,乙的总得分数S,T的程序框图.其中如果甲获胜则输入a=1,b=0.如果乙获胜,则输入a=0,b=1.
(1)在图中,第一,第二两个判断框应分别填写什么条件?
(2)求P的值.
(3)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是
3
5
,答对每道乙类题的概率都是
4
5
,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案