精英家教网 > 高中数学 > 题目详情
(2013•徐州一模)已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)求函数f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)单调增区间;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.
分析:(1)先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,0),故由点斜式即可得所求切线的方程;
(2)先求原函数的导数得:f'(x)=axlna+2x-lna=2x+(ax-1)lna,再对a进行讨论,得到f'(x)>0,从而函数f(x)在(0,+∞)上单调递增.
(3)f(x)的最大值减去f(x)的最小值大于或等于e-1,由单调性知,f(x)的最大值是f(1)或f(-1),最小值f(0)=1,由f(1)-f(-1)的单调性,判断f(1)与f(-1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e-1求出a的取值范围.
解答:解:(1)∵f(x)=ax+x2-xlna,
∴f′(x)=axlna+2x-lna,
∴f′(0)=0,f(0)=1
即函数f(x)图象在点(0,1)处的切线斜率为0,
∴图象在点(0,f(0))处的切线方程为y=1;(3分)
(2)由于f'(x)=axlna+2x-lna=2x+(ax-1)lna>0
①当a>1,y=2x单调递增,lna>0,所以y=(ax-1)lna单调递增,故y=2x+(ax-1)lna单调递增,
∴2x+(ax-1)lna>2×0+(a0-1)lna=0,即f'(x)>f'(0),所以x>0
故函数f(x)在(0,+∞)上单调递增;
②当0<a<1,y=2x单调递增,lna<0,所以y=(ax-1)lna单调递增,故y=2x+(ax-1)lna单调递增,
∴2x+(ax-1)lna>2×0+(a0-1)lna=0,即f'(x)>f'(0),所以x>0
故函数f(x)在(0,+∞)上单调递增;
综上,函数f(x)单调增区间(0,+∞);(8分)
(3)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
所以当x∈[-1,1]时,|(f(x))max-(f(x))min|
=(f(x))max-(f(x))min≥e-1,(12分)
由(2)知,f(x)在[-1,0]上递减,在[0,1]上递增,
所以当x∈[-1,1]时,(f(x))min=f(0)=1,
(f(x))max=max{f(-1),f(1)},
而f(1)-f(-1)=(a+1-lna)-(
1
a
+1+lna)=a-
1
a
-2lna,
记g(t)=t-
1
t
-2lnt(t>0),
因为g′(t)=1+
1
t2
-
2
t
=(
1
t
-1)2≥0(当t=1时取等号),
所以g(t)=t-
1
t
-2lnt在t∈(0,+∞)上单调递增,而g(1)=0,
所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,
也就是当a>1时,f(1)>f(-1);
当0<a<1时,f(1)<f(-1)(14分)
①当a>1时,由f(1)-f(0)≥e-1⇒a-lna≥e-1⇒a≥e,
②当0<a<1时,由f(-1)-f(0)≥e-1⇒
1
a
+lna≥e-1⇒0<a≤
1
e

综上知,所求a的取值范围为a∈(0,
1
e
]∪[e,+∞).(16分)
点评:本题考查了基本函数导数公式,导数的几何意义,利用导数研究函数的单调性及利用导数求闭区间上函数的最值.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2,且过点(
2
6
2
)

(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.
(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;
(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角∠CAD=45°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在[2500,3000)(元)内应抽出
25
25
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)选修:4-2:矩阵与变换
若圆C:x2+y2=1在矩阵A=
a,0
0,b
(a>0,b>0)对应的变换下变成椭圆E:
x2
4
+
y2
3
=1
,求矩阵A的逆矩阵A-1

查看答案和解析>>

同步练习册答案