已知直三棱柱的三视图如图所示,且是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.
(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为;(Ⅲ)当点为线段中点时,与成角.
解析试题分析:(Ⅰ)为了证明∥平面,需要在平面内找一条与平行的直线,而要找这条直线一般通过作过且与平面相交的平面来找.在本题中联系到为中点,故连结,这样便得一平面,接下来只需证与交线平行即可.对(Ⅱ)(Ⅲ)两个小题,由于是直三棱柱,且,故两两垂直,所以可以以为坐标轴建立空间直角坐标系来解决.
试题解析:(Ⅰ)证明:根据三视图知:三棱柱是直三棱柱,,连结,交于点,连结.由 是直三棱柱,得 四边形为矩形,为的中点.又为中点,所以为中位线,所以 ∥, 因为 平面,平面, 所以 ∥平面. 4分
(Ⅱ)解:由是直三棱柱,且,故两两垂直.
如图建立空间直角坐标系.
,则.
所以 ,
设平面的法向量为,则有
所以
取,得. 6分
易知平面的法向量为. 7分
由二面角是锐角,得 . 8分
所以二面角的余弦值为.
(Ⅲ)解:假设存在满足条件的点.
因为在线段上,,,故可设,其中.
所以 ,. 9分
因为与成
科目:高中数学 来源: 题型:解答题
在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=,E为CD的中点,将△BCE沿BE折起,使得CO⊥DE,其中垂足O在线段DE内.
(1)求证:CO⊥平面ABED;
(2)问∠CEO(记为θ)多大时,三棱锥C-AOE的体积最大,最大值为多少.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于,四边形ABCD是正方形.
(Ⅰ)求证;
(Ⅱ)求四棱锥E-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1= ,求三棱锥B1-A1DC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在底面是正方形的四棱锥中,面,交于点,是中点,为上一动点.
(1)求证:;
(1)确定点在线段上的位置,使//平面,并说明理由.
(3)如果PA=AB=2,求三棱锥B-CDF的体积
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥的三视图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.
(1)求证:;
(2)若为的中点,求直线与平面所成角的正弦值;
(3) 若四点在同一球面上,求该球的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某个实心零部件的形状是如下图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.
(1)证明:直线平面;
(2)现需要对该零部件表面进行防腐处理.已知,,,(单位:),每平方厘米的加工处理费为元,需加工处理费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求出该几何体的体积;
(2)若是的中点,求证:∥平面;
(3)求证:平面⊥平面.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com