精英家教网 > 高中数学 > 题目详情
(2008•虹口区二模)设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列等式:①b*(b*b)=b   ②(a*b)*[b*(a*b)]=b   ③(a*b)*a=a中,恒成立的是
①②
①②
(写出序号)
分析:根据对任意的a,b∈S,有a*(b*a)=b,由于a,b的任意性,①③可直接判断,②可先运算a*(b*a)然后即可,从而得到正确结论.
解答:解:对①相当于已知条件中a替换为b,明显成立,
对②b*(a*b)=a,原式变为a*(b*a)=b成立,
根据a*(b*a)=b,显然③不正确.
故答案为:①②
点评:本题主要考查对新定义的理解,在解题中关键是对新定义的灵活运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•虹口区二模)若复数(1+ai)•(a2+i)是纯虚数,则实数a=
0或1
0或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)等差数列{an}中,S20=30,则a3+a18=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)集合A={x||x|≤4,x∈R},B{x||x-3|≤a,x∈R},且A?B,则实数a的取值范围是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)当x>2时,使不等式x+
1x-2
≥a恒成立的实数a的取值范围是
(-∞,4]
(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)过点A(0,3),被圆(x-1)2+y2=4截得的弦长为2
3
的直线方程是
x=0或y=-
4
3
x+3
x=0或y=-
4
3
x+3

查看答案和解析>>

同步练习册答案