精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知点A(3,3),B(5,1),P(2,1),点M是直线OP上的一个动点.
(Ⅰ)求|
PB
-
PA
|
的值;
(Ⅱ)若四边形APBM是平行四边形,求点M的坐标;
(Ⅲ)求
MA
MB
的最小值.
分析:(Ⅰ)利用向量的坐标运算和模的计算公式即可得出;
(Ⅱ)利用平行四边形的性质、向量共线的性质及其坐标坐标运算即可得出;
(Ⅲ)利用向量共线和二次函数的单调性即可得出.
解答:解:(Ⅰ)∵点A(3,3),B(5,1),P(2,1),
PB
=(3,0)
PA
=(1,2)

PB
-
PA
=(2,-2)

|
PB
-
PA
|
=
22+(-2)2
=2
2

(Ⅱ)设点M(x,y).
∵四边形APBM是平行四边形,∴
PA
=
BM

∴(1,2)=(x-5,y-1),∴
x-5=1
y-1=2
,解得
x=6
y=3

∴M(6,3).
(Ⅲ)设点M(x,y).
OM
=(x,y)

由题意
OM
OP

∴x-2y=0,即x=2y.
∴M(2y,y).
MA
MB
=(3-2y,3-y)•(5-2y,1-y)
=5y2-20y+18
=5(y-2)2-2.
∴当y=2时,
MA
MB
取得最小值-2,此时M(4,2).
点评:熟练掌握向量的坐标运算和模的计算公式、平行四边形的性质、向量共线的性质、向量共线定理和二次函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案