【题目】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1 , 下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.
(1)若AB=6m,PO1=2m,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为6m,则当PO1为多少时,仓库的容积最大?
科目:高中数学 来源: 题型:
【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机万只并全部销售完,每万只的销售收入为万元,且
(1)写出年利润(万元)关于年产量(万只)的函数解析式;
(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线: ()的焦点为,准线为, ,且在第一象限,已知以为圆心, 为半径的圆交于, 两点(在的上方),为坐标原点.
(1)若是边长为的等边三角形,且直线: ()与抛物线相交于, 两点,证明: 为定值;
(2)记直线与抛物线的另一个交点为,若与的面积比为3,证明:直线过点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地政府调查了工薪阶层人的月工资收人,并根据调查结果画出如图所示的频率分布直方图,其中工资收人分组区间是.(单位:百元)
(1)为了了解工薪阶层对工资收人的满意程度,要用分层抽样的方法从调查的人中抽取人做电话询问,求月工资收人在内应抽取的人数;
(2)根据频率分布直方图估计这人的平均月工资为多少元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点作轴的垂线交于点.
⑴求椭圆的标准方程;
⑵当直线的斜率为时,求的面积;
⑶试比较与大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则的取值范围是( )
A. [,0) B. [,0] C. [,1) D. [,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b+c)sin B+(2c+b)sin C.
(1)求A的大小; (2)若sin B+sin C=1,试判断△ABC的形状.(12分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的左右焦点分别为, ,短轴两个端点为, ,且四边形是边长为的正方形。
(1)求椭圆的方程;
(2)已知圆的方程是,过圆上任一点作椭圆的两条切线, ,求证:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com