精英家教网 > 高中数学 > 题目详情
(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0
分析:先由求导公式求出f′(x),根据偶函数的性质,可得f′(-x)=f′(x),从而求出a的值,然后利用导数的几何意义求出切线的斜率,进而写出切线方程.
解答:解:f′(x)=3x2+2ax+(a-3),
∵f′(x)是偶函数,
∴3(-x)2+2a(-x)+(a-3)=3x2+2ax+(a-3),
解得a=0,
∴k=f′(0)=-3,
∴切线方程为y=-3x,即3x+y=0.
故答案为:3x+y=0.
点评:本题主要考查求导公式,偶函数的性质以及导数的几何意义,难度中等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•太原一模)x、y满足约束条件
x+y≥1
x-y≥-1
2x-y≤2
,若目标函数z=ax+by(a>0,b>0)的最大值为7,则
3
a
+
4
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)复数
i
1-i
的共轭复数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知向量
a
b
满足|
a
|=1,|
b
|=
2
,(
a
-
b
)⊥
a
,向量
a
b
的夹角为
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)<|a-1|的解集非空,求实数a的取值范围.

查看答案和解析>>

同步练习册答案