精英家教网 > 高中数学 > 题目详情
11.若不等式x2+(a-3)x+1≥0对一切x∈$({0,\frac{1}{2}}]$都成立,则a的最小值为$\frac{1}{2}$.

分析 不等式x2+(a-3)x+1≥0对一切x∈$({0,\frac{1}{2}}]$成立?a-3≥(-x-$\frac{1}{x}$)max,x∈$({0,\frac{1}{2}}]$.令f(x)=-x-$\frac{1}{x}$,x∈$({0,\frac{1}{2}}]$,利用导数研究其单调性极值与最值即可得出.

解答 解:不等式x2+(a-3)x+1≥0对一切x∈$({0,\frac{1}{2}}]$成立?a-3≥(-x-$\frac{1}{x}$)max,x∈$({0,\frac{1}{2}}]$.
令f(x)=-x-$\frac{1}{x}$,x∈$({0,\frac{1}{2}}]$,f′(x)=$\frac{1-{x}^{2}}{{x}^{2}}$>0,
∴函数f(x)在x∈(0,$\frac{1}{2}$]上单调递增,
∴当x=$\frac{1}{2}$时,函数f(x)取得最大值,f($\frac{1}{2}$)=-$\frac{5}{2}$.
∴a的最小值为$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了利用导数研究其单调性极值与最值、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.计算:$\underset{lim}{x→∞}$$\frac{{2x}^{2}+3}{3x+2}$sin$\frac{1}{x}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=log2(ax+1)在(-∞,-2)上单调递减,则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC中,a,b,c分别是角A,B,C所对的边,b2=a2+c2+ac,
(1)求∠B的大小;
(2)若a=4,∠A=45°,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$且|$\overrightarrow{AD}$-$\overrightarrow{AB}$|=|$\overrightarrow{AD}$+$\overrightarrow{AB}$|,则ABCD为(  )
A.平行四边形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.满足条件{(x.y)|$\sqrt{{(x-3)}^{2}{+y}^{2}}$-$\sqrt{{(x+3)}^{2}{+y}^{2}}$=6}的点p(x,y)的轨迹是射线,方程为y=0(x≤-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函教y=log3(x+2)的图象是由函数y=log3x的图象左平移2个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果一辆汽车匀速行驶,2h行驶110km,这辆汽车行驶的路程s是时间t的函数,请用解析法和图象法表示这个函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.偶函数f(x)的定义域为R,且在(-∞,0)上是减函数,且f(-1)=M与f(a2-a+$\frac{5}{4}$)=N(a∈R)的大小(  )
A.M≤NB.M≥NC.M<ND.M>N

查看答案和解析>>

同步练习册答案