精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.
(1)求轨迹为的方程
(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.

(1);(2)当时直线与轨迹恰有一个公共点; 当时,故此时直线与轨迹恰有两个公共点;当时,故此时直线与轨迹恰有三个公共点.

解析试题分析:(1)设点,根据条件列出等式,在用两点间的距离公式表示,化简整理即得;(2)在点的轨迹中,记,设直线的方程为,联立方程组整理得 ,分类讨论①时;② ;③ ;④ ,确定直线与轨迹的公共点的个数.
(1)设点,依题意,,即
整理的
所以点的轨迹的方程为.
(2)在点的轨迹中,记
依题意,设直线的方程为
由方程组     ①
时,此时,把代入轨迹的方程得
所以此时直线与轨迹恰有一个公共点.
时,方程①的判别式为      ②
设直线轴的交点为,则由,令,得
(ⅰ)若,由②③解得.
即当时,直线没有公共点,与有一个公共点,
故此时直线与轨迹恰有一个公共点.
(ⅱ)若,由②③解得
即当时,直线有一个共点,与有一个公共点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆G:过点,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,已知双曲线的右焦点,点分别在的两条渐近线上,轴,(为坐标原点).

(1)求双曲线的方程;
(2)过上一点的直线与直线相交于点,与直线相交于点,证明点上移动时,恒为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆)的左、右焦点为,右顶点为,上顶点为.已知
(1)求椭圆的离心率;
(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.
(1)若圆过原点,求圆的方程; 
(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆过点,两焦点为是坐标原点,不经过原点的直线与椭圆交于两不同点.
(1)求椭圆C的方程;       
(2) 当时,求面积的最大值;
(3) 若直线的斜率依次成等比数列,求直线的斜率.

查看答案和解析>>

同步练习册答案