精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知函数

(1)在锐角中,分别是角的对边;若,  sin(AC)=sinC,求的面积.

(2)若,求的值;

 

【答案】

(1)

(2)

【解析】

试题分析:(1)利用二倍角公式化简为单一三角函数,进而求解角A的值。和边b,c的值,结合正弦面积公式得到。

(2)在第一问的基础上,得到关系式,然后结凑角的思想得到函数值的求解。

解:

 

           -----2分

(1).

,所以.

又因为,所以,所以,即.--4分

又因为sin(AC)=sinC,即sinB=sinC,由正弦定理得

.                                           -----6分

                              -8分

(2),则

---11分

  -14分

考点:本试题主要考查了三角函数的化简以及解三角形中两个定理的运用。

点评:解决该试题的关键是首先利用两角和差的关系式化为单一函数,然后借助于正弦定理和余弦定理和三角形面积公式求解得到。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)已知向量 ,函数.   (Ⅰ)求的单调增区间;  (II)若在中,角所对的边分别是,且满足:,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知,且以下命题都为真命题:

命题 实系数一元二次方程的两根都是虚数;

命题 存在复数同时满足.

求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省高三第一次月考文科数学试卷(解析版) 题型:解答题

(本题满分14分)已知函数

(1)若,求x的值;

(2)若对于恒成立,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

(本题满分14分)

已知椭圆的离心率为,过坐标原点且斜率为的直线相交于

⑴求的值;

⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

((本题满分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当x=2时,求证:BD⊥EG ;

(2)若以F、B、C、D为顶点的三棱锥的体积记为

的最大值;

(3)当取得最大值时,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步练习册答案