如图,梯形ABCD中,BA⊥AD,CD⊥AD,AB=2,CD=4,P为平面ABCD外一点,平面PAD⊥平面ABCD,△PBC是边长为10的正三角形,求平面PAD与面PBC所成的角.
解法一:如图,延长DA、CB交于E,==,∴AB是△ECD的中位线,CB=BE=10.又△PCB为正△,易证△PCE为直角三角形,PE⊥PC.又平面PDA⊥平面ABCD,且CD⊥交线DA,∴CD⊥平面PDE.PE是PC在平面PDE内的射影,∴PE⊥PD(三垂线定理的逆定理).故∠CPD是D-PE-C的平面角.在Rt△CDP中,sin∠DPC==,故二面角大小为arcsin.
CD⊥平面PAD △PAD是△PBC在平面PDA内的射影.设面PDA与面PCB所成的二面角为,则S△PDA=S△PCB·cos.Rt△PAB中,PA=4=AD;Rt△PDC中,PD=2. ∴△PAD为等腰三角形且S△PAD=PD·AH=15. cos===, =arccos=. |
科目:高中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com