精英家教网 > 高中数学 > 题目详情

如图,梯形ABCD中,BA⊥AD,CD⊥AD,AB=2,CD=4,P为平面ABCD外一点,平面PAD⊥平面ABCD,△PBC是边长为10的正三角形,求平面PAD与面PBC所成的角.

答案:
解析:

  解法一:如图,延长DA、CB交于E,,∴AB是△ECD的中位线,CB=BE=10又△PCB为正△,易证△PCE为直角三角形,PE⊥PC又平面PDA⊥平面ABCD,且CD⊥交线DA,∴CD⊥平面PDEPE是PC在平面PDE内的射影,∴PE⊥PD(三垂线定理的逆定理)故∠CPD是D-PE-C的平面角在Rt△CDP中,sin∠DPC=,故二面角大小为arcsin

  

  CD⊥平面PAD

  △PAD是△PBC在平面PDA内的射影设面PDA与面PCB所成的二面角为,则S△PDA=S△PCB·cosRt△PAB中,PA=4=AD;Rt△PDC中,PD=2

  ∴△PAD为等腰三角形且S△PADPD·AH=15

  cos

  arccos


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,梯形ABCD中,CD∥AB,AD=DC=CB=
12
AB,E是AB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角P-DE-C的大小为120°.
(1)求证:DE⊥PC;
(2)求直线PD与平面BCDE所成角的大小;
(3)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD中,AD∥BC,PA⊥平面ABCD,E是PD的中点,AB=BC=1,PA=AD=2.
(1)求证:CE∥平面PAB;
(2)求证:CD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD中,CD∥AB,AD=DC=CB=
12
AB=a
,E是AB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角P-DE-C的大小为120°
(1)求证:DE⊥PC;
(2)求点D到平面PBC的距离;
(3)求二面角D-PC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是BC上的动点,当
PD
PA
最小时,tan∠APD的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图直角梯形ABCD中,∠DAB=90°,AD∥BC,E,F是AB边的四等分点,AB=4,BC=BF=AE=1,AD=3,P为在梯形区域内一动点,满足PE+PF=AB,记动点P的轨迹为Γ.
(1)建立适当的平面直角坐标系,求轨迹Γ在该坐标系中的方程;
(2)判断轨迹Γ与线段DC是否有交点,若有交点,求出交点位置;若没有交点,请说明理由;
(3)证明D,E,F,C四点共圆,并求出该圆的方程.

查看答案和解析>>

同步练习册答案