精英家教网 > 高中数学 > 题目详情
13.求经过直线l1:2x+3y-5=0与l2:7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程.

分析 根据直线系可设:要求的直线方程为:2x+3y-5+λ(7x+15y+1)=0,化为(2+7λ)x+(3+15λ)y+(λ-5)=0,由于要求的直线平行于直线x+2y-3=0,根据相互平行的直线斜率、截距满足的条件即可得出.

解答 解:设要求的直线方程为:2x+3y-5+λ(7x+15y+1)=0,
化为(2+7λ)x+(3+15λ)y+(λ-5)=0,
∵要求的直线平行于直线x+2y-3=0,
∴$\frac{2+7λ}{1}=\frac{3+15λ}{2}≠\frac{λ-5}{-3}$,
解得λ=1,
∴要求的直线方程为:9x+18y-4=0.

点评 本题考查了直线系的应用、相互平行的直线斜率、截距满足的条件,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.营养学家指出,高中学生良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费35元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费28元.为了满足营养专家指出的 日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列的首项为31,若从第16项开始小于1,则此数列的公差d的取值范围是(  )
A.(-∞,-2)B.[-$\frac{15}{7}$,-2)C.(-2,+∞)D.(-$\frac{15}{7}$,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知底面为边长为2的正方形,侧棱长为1的直四棱柱ABCD-A1B1C1D1中,P,Q是面A1B1C1D1上的两个不同的动点.给出以下四个结论:
①若DP=$\sqrt{3}$,则DP在该四棱柱六个面上的投影长度之和的最大值为6$\sqrt{2}$;
②若P在面对角线A1C1上,则在棱DD1上存在一点M使得MB1⊥BP;
③若P,Q均在面对角线A1C1上,且PQ=1,则四面体BDPQ的体积一定是定值;
④若P,Q均在面对角线A1C1上,则四面体BDPQ在底面ABCD-A1B1C1D1上的投影恒为凸四边形的充要条件是PQ>$\sqrt{2}$;
以上各结论中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x-1)=4x2-8x+5,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程$\frac{2x+1}{{x}^{2}+2}$=log${\;}_{\frac{1}{2}}$x的解所在的区间是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)D.($\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中xOy中,设P为圆(x-2)2+(y-1)2=1上的任意一点,则x2+y2的最大值是6+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.焦点在x轴上的椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4+k}$=1的离心率为$\frac{4}{5}$,则k的值为(  )
A.21B.$-\frac{181}{25}$C.-$\frac{19}{25}$D.$\frac{19}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若复数z=i3+$\frac{1}{1+i}$(i为虚数单位),则复数z的模为(  )
A.2$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步练习册答案