精英家教网 > 高中数学 > 题目详情
3.求函数的导数:y=ex

分析 直接由基本初等函数的导数公式得答案.

解答 解:∵y=ex,∴y′=(ex)′=exlne=ex

点评 本题考查基本初等函数的导数公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若a,b,c三个正数成等差数列,公差d≠0,自然数n≥2,求证:an+cn≥2bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sin4x-cos2x,求其最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知在△ABC中,边长a=$\sqrt{3}$,b=1,且∠A=60°,那么△ABC的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2=c2+$\sqrt{3}$ab,c=1,若△ABC为锐角三角形,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2-axlnx-lnx+ax,f′(x)函数是f(x)的导函数,函数y=f(x)有且只有四个单调区间.
(1)设f′(x)的导函数为f″(x),分别求f′(x)和f″(x)(两个结果都含a).
(2)实数a的取值范围;
(3)设n∈N*,试比较f″(n+1)-f′(n)与$\frac{3}{2}$-a的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明:logbN${\;}^{lo{g}_{a}M}$=logbM${\;}^{lo{g}_{a}N}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=kax-a-x(a>0,a≠1,k∈R),f(x)是定义域为R上的奇函数.
(1)求k的值,并证明a>1时,f(x)在R上是增函数;
(2)已知f(1)=$\frac{3}{2}$,函数g(x)=a2x+a-2x-2f(x),x∈[-1,1],求g(x)的值域;
(3)已知a=3,若f(x)≥λf(x),对x∈[1,2]时恒成立,求最大整数λ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)为定义在(-1,1)上的奇函数,当x<0时,f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

同步练习册答案