A. | 3 | B. | 4 | C. | 6 | D. | 7 |
分析 由条件利用导数求得函数的极值,再结合三次函数的图象特征求得函数f(x)的零点有2个时a的值,从而得出结论.
解答 解:∵f(x)=2x3-9x2+12x-a,∴f′(x)=6x2-18x+12=6(x-1)(x-2),
令f′(x)=0,求得x=1,或 x=2.
在(-∞,1)上,f′(x)>0,f(x)单调递增;在(1,2)上,f′(x)<0,f(x)单调递减;在(2,+∞)上,f′(x)>0,f(x)单调递增.
故f(1)=5-a为函数f(x)的极大值;f(2)=4-a为函数f(x)的极小值,
故当a=4,或a=5时,函数f(x)的零点有2个,
故选:B.
点评 本题主要考查利用导数求函数的极值,函数的零点,三次函数的图象特征,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com